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Abstract. Using a graph counting technique suitable for regular fractals, an exact evaluation
of the total number of embeddings of self-avoiding walks on the generalized Sierpinski gasket
is obtained. Numerical estimates for the connective consjantare quoted for the first time,
where b is the generation parameter of the gaskets. It is shown that the number of distinct
n-step SAWSs per site, converges to the triangular lattice values wiber- oo (Dy — 2). Our
analysis indicates that, converges to the Euclidean value in the same limit and an asymptotic
expression is given.

1. Introduction

The statistics of self-avoiding walks (SAWS) on fractals has been extensively investigated
using exact renormalization techniques [1-3], by finite-size scaling arguments [4], Monte
Carlo techniques [5] and, more recently, with series expansions [6]. This problem is relevant
to the study of polymers in a dilute solution confined to a highly disordered media.

These studies show that the critical properties of SAWSs on fractals depend on several
geometrical parameters besides the Hausdorff dimer3jorA question that naturally arises
is the convergence of critical exponents to Euclidean lattices values Wpapproaches an
integer dimension. This work adresses this problem, which has been intensively investigated
in the last few years [5, 7-9].

We study SAWs on a family of finitely ramified regular fractals embedded in the two-
dimensional Euclidean space, the generalized Sierpinski gasket. Each member of this family
is constructed from a generator characterized by a paranmetethere b is an integer
which runs from two to infinity. Each generator is an equilateral triangle (see figure 1)
containingh? smaller triangles from which the downward-oriented ones are discarded and
theb(b+1)/2 upward-oriented triangles are left. The corresponding regular fractal is formed
by reproducing iteratively the generator in each upward-oriented triangle. The lattice at an
s-stage of construction (after iterations) is then obtained from the generator with all
upward-oriented smaller triangles filled with the reproductions of the previoud)-stage.

The lattice at the first stage is the generator.
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b=2 b=3

Figure 1. First steps of construction df-triangles (forb = 2, 3).

In the limit s — oo, a fractal lattice is obtained (we call ittatriangle) with dimension:
Dy = In[b(b +1)/2]/ Inb. (1)

From (1), whenb — oo, Dy — 2. It was argued that [3] as the limiting generator,
whenb — oo, is only the wedge of the primitive triangle, the members of the generalized
Sierpinski gasket family should converge to a wedge of the triangular lattice. This, however,
does not insure the convergence of the critical parameters of SAWSs on these lattices towards
the correspondent Euclidean values. The critical properties of SAWs on any lattice are
obtained when the number of stepgend to infinity. This means that in order to obtain
the critical properties of SAWs on the limiting Euclidean lattice from the fractal family,
one should take the limik — oo first and then analyse the statistics of SAWsias> co.

On the other hand, when one analyses the convergence of critical parameters of SAW on
a fractal family asb — oo, it means that the limik — oo was taken before the limit
b — 0.

The statistics of SAWs on the Sierpinski gasket= 2) was obtained exactly from
a renormalization-group approach [2]. SAWs were also studied on a fractal family called
truncated 3-simplices [1] which is in the same universality class as the generalized Sierpinski
gasket family. For these lattices there are exact results wh€nb2< 8, obtained via a
renormalization group approach [3] and also numerical result$ f¥9r80 obtained via the
Monte Carlo renormalization group method [5].

It has been shown that the critical exponentrosses the two-dimensional value when
b ~ 26 and decreases monotonically within the range studied. On the other hand, the
exponenty is greater than the two-dimensional value and increases monotonicallypwith
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[7]. This behaviour is consistent with the scaling arguments of Dhar [4].

In other families of fractals this crossing at= 231 for b ~ 26 has also been observed
[8], but the estimates of do not approaci% whenb — oo and D, — 2 (fractals withb
up to 121 were studied). However, in tkdefamily and the Koch family, wheb — oo,

D; — 1 and the critical exponents tend to the (trivial) one-dimensional values [9].

In this work, the critical behaviour of SAWSs dntriangles is analysed using the series-
expansion method. We use an exact enumeration technique to calculate the densitgof
SAWSs ¢, (b) for the b-triangles (section 2). This method has already been used to study the
critical behaviour of SAWs on infinitely ramified fractals[6].

We show analytically that, (b) converges to the triangular lattice (Euclidean) value
c,(T) asb — oo (section 3).

The connective constanis, are calculated for severa@kttriangles. Asu; are non-
universal quantities, they could not be inferred from the previous studies [3-5] of SAWSs
that have been performed on other fractal families. The analysis of the chain-generating
function properties for SAWs on thetriangles and the numerical values @f indicate
that u;, converge to the triangular valye; whenb — oo (section 4).

2. Series expansions

Consider the chain-generating function for SAWs on a partickHaaiangle:
o0
Chl(x) =) calb)x" @)
n=1
wherec, (b) is the total number of distingi-step SAWSs per number of sites of the lattice

andx is the weight factor for each step.
The connective constanpt, for SAWSs on eaclb-triangle can be obtained fronj10]:

o = lim [c, ()], 3
The coefficients, (b) are obtained in the fractal limit (infinite lattice) from:
. G(s)
2 (D) = | " 4a
cn(b) xl—>n;o Nb(s) ( )

whereG?(s) is the total number of embeddings ofstep SAWs in stage and N’(s) is the
number of sites in this stage.
The density of a particular SAW is given by:

- Gha()
csaw(b) = lim No(s) (4b)
whereG2,,,(s) is its number of embeddings in stage
Clearly,
) = Y csaw(b) Q)
SAW/n

where sy, is the summation over all distinetstep SAWSs.

In order to calculate, (b), we generalize the method developed in [11] that relates the
number of embeddings of a connected graph in two consecutive stages of construction of a
regular fractal.

t The asymptotic form expected foj, (b) is u,"n?» 1.
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Figure 2. Examples of embedding which contributef§ and 1? terms. O External connection
sites; O internal connection sites.

For a particulam-step SAW and for a particuldr-triangle there is a minimum lattice
stagesp + 1 for which any embedding of the SAW cannot cross any reproductions of the
so-stage in theiso+1)-stage. Fos > so, the recursion relation betwe€H (s) andG% (s —1)
is:

G’ (s) = A1(b)G’ (s — 1) + 3A2(b)E” + Az(b)I". (6)

A1(b) is the number of reproductions of stage 1 in s, so the first term in equation (6)
represents the total number of SAWs completely embedded in a single reproduction of stage
s — 1. A,(b) is the number of external sites connecting these reproductions at one side of
the stage, andE? is the number of embeddings in stagahich crosses two reproductions
of stages — 1 through external sites. Analogouslyz(h) and I? refer to the embeddings
passing through internal sites. Figure 2 shows two particular embeddings which contribute
to EX and one tol’. Note that they do not depend d@nnor s if these parameters are
sufficiently large.

The coefficientsA;(b), A2(b) and Az(b) are given by:

A1(b) =b(b+1)/2 (7a)

Ax(b) = (b~ 1) (7b)

As(h)=b -1 —-2)/2. (7c)
Analogously, we obtain the recursion formula for the number of lattice ait&s):

N’(s) = A1(b)N®(s — 1) — 3A,(b) — 2A3(b). (8)
Iterating the recursion formula (6) up 5@ + 1 we obtain:

G’ (s) = AT°G 2 (s0) + 11__A:1‘:0[3A2E5 + AsI”]. 9)

E® and I can be obtained considering the embeddings-step SAWSs across two
adjacent reproductions of stagg[11]. In table 1 we present the values f G2(so), E>
and /2 for the 2-triangle for 1< n < 5.
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Table 1. Numerical values ofo, G2(so), EZ andI? for 1 < n < 5.

o G2(s0) E2 I?

n

©“

n=1 1 9 0 0
= 2 75 4 12
=3 2 171 24 72
=4 3 1389 100 300

n=5 3 3264 344 1032

Table 2. Selected values af;, (b).

n=1 n=2 n=3 n=4 n=>5 n=28

b=2 4 12 30.67 76 186.67 2691.11
b=3 4.29 14.57 42.43 116.14 307.29 5740.33
b=4 4.5 16.50 53.10 159.90 458.85 9759.63
b=5 4.67 18 61.96 201.87 628.89 15742.83
b=8 5 21 80.44 297.33 1073.19 44635.75
b=15 5.37 2432 101.47 412.18 1650.96 100535.28
b=oo 6 30 138 618 2730 224130

Iterating equation (8) withy = 1 one obtains:
b s—1n7h 1- Ai_l
N(s) = A7 "N 1)+ ———[—-34, — 243]. (10)
1-— A,
N?(1), the number of sites of the generator of #hériangle, is given by:

b+ +2)

NP1 = 5 (11)
Using (10) and (11), we can rewritegyas:
b _ b b b
e, (b) = lim G,(s)  (A1—1DG,(s0) + (BA2E, + Asl}) (12)

=00 NO(s) AP (AL — DNP(L) — (342 + 243)]

whereA1, A, and A3 are given by (7).

In table 2 we present, (b) up ton = 8 for some values ab between 2 and 15.

We have constructed series up to the ordern of 14 for b ranging from 3 to 20 and
up ton = 13 for b ranging from 21 to 100.

3. Finite SAWSs in the Euclidean limit

Consider a particulan-step SAW and leb be sufficiently large: in this casg = 1. In
figure 3 we show this SAW embedded in the generator. The total number of embeddings
obeys the relation:

TO—R+1D(B—R+2) <Gy <30+ D(B+2). (13)

R is the greatest distance between two distinct sites belonging to the SAW, and the left-hand
side of (13) is a lower bound of the number of embeddings of this SAW, that is, it is the
number of embeddings of a (lattice) circle with diameRemwhile the right-hand side is the
number of sites of the generator.
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b
Figure 3. The number of starting sites is less than the total number of %i(bs«— 1+ 2)
and bigger than this total number minus the excluded volérﬂe— R+1((b—R+2).
We calculate the number of embeddings of this SAWw(b) using the procedure
shown in the last section. Using inequality (13) we obtain:

(P02 — 1) Gb = R+ Db — R +2) + 30 — DEsaw + 02 Ispy

< csaw(b)

(h<b2+1) _ 1) (b+1)2(b+2) —3b—1) = (b—1)(b—2)

(P52 — 1) G+ Db +2) + 30 — D Esaw + “2 Isny
<

= b(b+1 b+1)(b+2 (14)
(P02 — 1) D 3 - 1)~ (b~ Db - D)
where Espw and Isaw have analogous definitions &8 and E° respectively.
In the limit » — oo both sides of this inequality go to 1. So,
bllm csaw(b) = 1. (15)
Using (5) it follows that:
Jim ¢, (b) = > Jim csaw(b) = (7). (16)

SAW/n

This result means that thah terms of the series expansions for SAWSs onitiigangles
converge to theith term of the series for the triangular lattice whier> oo.

4. Numerical results in the Euclidean limit

Consideringy as a continuous parameter, the sequence of functfop&)]*"} is such that
each term goes tf[c,(T)]¥"} whenb — oo, as shown in section 3. The inversion of the
limits n — oo andb — oo is possible if the convergence of that sequence is uniform. Note
in figure 4 the decreasing distance between the curves for subseqguahtes, which is a
necessary condition for a uniform convergence. With this assumption, we get:

lim w, = lim lim [c,®)]Y" = lim lim [c,(®)]Y" = lim [c,(T)]Y" = pr. (17)
b—o0 b—o00on—>o0 n—00 b— 00 n— 00
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Figure 4. Plot of [c,(b)]Y" versus ¥b for 1 < n < 12 andb < 170. The dots are the limiting
triangular values. The plot displays the characteristic behaviour of a uniform convergent series.
The crosses are our estimatesugf (see text).

Equation (12) guarantees a rational expressioncfob). Its finite value in the limit
b — oo implies that both polynomials are of the same dedre&hen,

ca(b) = - (18)

whereq;, 8; andk depend om. From (16) and (18) and fadr large:

1/n
Ve ) = yen(T) 1+ on (19)
b

with
5= _ P (20)
@ Po
In figure 5 we plots, versusr calculated from (19). We obtain:
8, ~ n°%. (21)

Taking the limitn — oo in equation (19) and using (3) and (21), we get that> ur,
with a null first-order correction in /b.

Our numerical estimates @f, confirm this result. We calculate the linear extrapolated
values for different sets of points in the plgi(b)Y”" against%. The estimates
of u, are obtained averaging these values. The error bar is their standard deviation. This
method parallels the construction of Neville tables [10]. Our results for the known cases

b = 2 and for the triangular lattice ayge, = 2.2815+ 0.0067 andur ~ 4.154, using series
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Figure 5. Log—log plot of§, versusn.

Table 3. Numerical estimates qgfy,.

b b b b
2 22824+ 0.007 26 3982+ 0.009
3 249+0.02 27 3991+ 0.009
4 2686+ 0.004 28 40004+ 0.008
5 282+0.01 29 4008+ 0.008
6 292+0.02 30 40154+ 0.008
7 299+0.05 31 4022+ 0.008
8 313+0.07 33 40344 0.008
9 327+0.07 35 4044+ 0.008
10 339+ 0.06 37 4053+ 0.007
11  352+0.04 40 4065+ 0.007
12 360+ 0.03 42 40714+ 0.007
13  365+0.03 45 4080+ 0.007
14 371+0.03 50 4092+ 0.007
15 3754002 55 4102+ 0.007
16 379+ 0.02 60 41104+ 0.007
17 3824002 65 4119+ 0.007
18 385+0.02 70 4125+ 0.007
19 3874001 75 4130+ 0.007
20 389+0.01 80 4134+0.008
21  392+0.01 85 4138+ 0.008
22 393+0.01 90 4141+0.008
23 395+0.01 95 4144+ 0.008

24 396+0.01 100 4146+ 0.008
25 39724 0.009

up to the order ofi = 19 and 14, respectively. They are in good agreement with the known
resultsp, = 2.288 [2] andur = 4.150 75+ 0.0003 [12].
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Figure 6. Plot of u; versus ¥b2. Convergence towards the Euclidean vajueis observed.

In table 3 we show the estimates @f obtained using the procedure above for several
b up tob = 100.

In figure 6 we plotu, versus(1/b?). From the numerical analysis of the data in table 3
we get asymptotically:

[y = (4.148+ 0.003) (1— Qg'obﬂ +o (bl?’>> ' )

It confirms the convergence of, to ur whenb — oco. The limiting value ofu, when
b — oo includes the triangular lattice value, and the first correction term is estimated.

The connective constanig, may also be obtained using an alternative method based
on exact renormalization relations [1, 2]. For the Sierpinski gasket family, the non-trivial
fixed point does not determing,: one should study numerically the flow in the parameter
space, as shown in [2] for the particular casebef 2.

In [4], it is also suggested an asymptotic behaviour for the non-trivial fixed points of
these renormalization equations,/as> oo. Nevertheless, as mentioned abong,are not
trivially related with the fixed points in the case of the Sierpinski gasket family, and so, it
is not possible to draw any comparison with the asymptotic behaviour found in (22).

5. Conclusion

The main aim of this work is the study of the convergenceupftowards the Euclidean
value ur whenb — oo. As explained in the text, this convergence is not obvious due to
an inversion of the limit$ — oo andn — oo when one calculates lign. o wp OF pur.

The direct computation ofi, for large b according to (3) demands the evaluation of
cq(b) for n andb sufficiently large. On the other hand, the exponential growtidpfso)
with n sets of upper values of for which ¢, (b) can be evaluated for eadhtriangle by
(12).
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In this treatment, the sequence of coefficienié) are considered for each value of
b independently. We then proceed with a new analysis and congjder as a sequence
of functions (with indexn) of the continuous parametér The asymptotic behaviour of
cn(b) whenb — oo for each value ofn is obtained and it is shown analytically that
lim,_ - c,(b) = ¢,(T), that is, each coefficient converges asymptotically to the triangular
value.

Our analysis of the coefficients (b) indicate that lim)_, o, i, = ur with the first-order
correction term of the ordez%.

The numerical estimates qf, confirm the above result. This is the first numerical
evidence of the convergence of a critical parameter of SAWSs to the corresponding Euclidean
value whenb — oo in the family of generalized Sierpinski gaskets.

Using an exact enumeration technique to calculgi®) we obtain series expansions
that are exact order by order. The results presented herg,ftrave good accuracy and
can be systematically improved by enlarging the order of the series.

The investigation of the statistic of SAWsz on fractals based on the series-expansion
method would also be helpful to settle some open question and conjectures regarding the
limiting behaviour of the associated critical exponent®as oco. Work along these lines
is in progress.
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