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Abstract. Using a graph counting technique suitable for regular fractals, an exact evaluation
of the total number of embeddings of self-avoiding walks on the generalized Sierpinski gasket
is obtained. Numerical estimates for the connective constantsµb are quoted for the first time,
where b is the generation parameter of the gaskets. It is shown that the number of distinct
n-step SAWs per sitecn converges to the triangular lattice values whenb→∞ (Df → 2). Our
analysis indicates thatµb converges to the Euclidean value in the same limit and an asymptotic
expression is given.

1. Introduction

The statistics of self-avoiding walks (SAWs) on fractals has been extensively investigated
using exact renormalization techniques [1–3], by finite-size scaling arguments [4], Monte
Carlo techniques [5] and, more recently, with series expansions [6]. This problem is relevant
to the study of polymers in a dilute solution confined to a highly disordered media.

These studies show that the critical properties of SAWs on fractals depend on several
geometrical parameters besides the Hausdorff dimensionDf . A question that naturally arises
is the convergence of critical exponents to Euclidean lattices values whenDf approaches an
integer dimension. This work adresses this problem, which has been intensively investigated
in the last few years [5, 7–9].

We study SAWs on a family of finitely ramified regular fractals embedded in the two-
dimensional Euclidean space, the generalized Sierpinski gasket. Each member of this family
is constructed from a generator characterized by a parameterb, where b is an integer
which runs from two to infinity. Each generator is an equilateral triangle (see figure 1)
containingb2 smaller triangles from which the downward-oriented ones are discarded and
theb(b+1)/2 upward-oriented triangles are left. The corresponding regular fractal is formed
by reproducing iteratively the generator in each upward-oriented triangle. The lattice at an
s-stage of construction (afters iterations) is then obtained from the generator with all
upward-oriented smaller triangles filled with the reproductions of the previous(s−1)-stage.
The lattice at the first stage is the generator.
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Figure 1. First steps of construction ofb-triangles (forb = 2, 3).

In the limit s →∞, a fractal lattice is obtained (we call it ab-triangle) with dimension:

Df = ln[b(b + 1)/2]/ ln b. (1)

From (1), whenb → ∞, Df → 2. It was argued that [3] as the limiting generator,
whenb→∞, is only the wedge of the primitive triangle, the members of the generalized
Sierpinski gasket family should converge to a wedge of the triangular lattice. This, however,
does not insure the convergence of the critical parameters of SAWs on these lattices towards
the correspondent Euclidean values. The critical properties of SAWs on any lattice are
obtained when the number of stepsn tend to infinity. This means that in order to obtain
the critical properties of SAWs on the limiting Euclidean lattice from the fractal family,
one should take the limitb→∞ first and then analyse the statistics of SAWs asn→∞.
On the other hand, when one analyses the convergence of critical parameters of SAW on
a fractal family asb → ∞, it means that the limitn → ∞ was taken before the limit
b→∞.

The statistics of SAWs on the Sierpinski gasket(b = 2) was obtained exactly from
a renormalization-group approach [2]. SAWs were also studied on a fractal family called
truncated 3-simplices [1] which is in the same universality class as the generalized Sierpinski
gasket family. For these lattices there are exact results when 26 b 6 8, obtained via a
renormalization group approach [3] and also numerical results forb 6 80 obtained via the
Monte Carlo renormalization group method [5].

It has been shown that the critical exponentν crosses the two-dimensional value when
b ≈ 26 and decreases monotonically withb in the range studied. On the other hand, the
exponentγ is greater than the two-dimensional value and increases monotonically withb
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[7]. This behaviour is consistent with the scaling arguments of Dhar [4].
In other families of fractals this crossing atν = 3

4 for b ≈ 26 has also been observed
[8], but the estimates ofν do not approach3

4 whenb →∞ andDf → 2 (fractals withb
up to 121 were studied). However, in the8 family and the Koch family, whenb → ∞,
Df → 1 and the critical exponents tend to the (trivial) one-dimensional values [9].

In this work, the critical behaviour of SAWs onb-triangles is analysed using the series-
expansion method. We use an exact enumeration technique to calculate the density ofn-step
SAWs cn(b) for theb-triangles (section 2). This method has already been used to study the
critical behaviour of SAWs on infinitely ramified fractals[6].

We show analytically thatcn(b) converges to the triangular lattice (Euclidean) value
cn(T ) asb→∞ (section 3).

The connective constantsµb are calculated for severalb-triangles. Asµb are non-
universal quantities, they could not be inferred from the previous studies [3–5] of SAWs
that have been performed on other fractal families. The analysis of the chain-generating
function properties for SAWs on theb-triangles and the numerical values ofµb indicate
thatµb converge to the triangular valueµT whenb→∞ (section 4).

2. Series expansions

Consider the chain-generating function for SAWs on a particularb-triangle:

Cb(x) =
∞∑
n=1

cn(b)x
n (2)

wherecn(b) is the total number of distinctn-step SAWs per number of sites of the lattice
andx is the weight factor for each step.

The connective constantµb for SAWs on eachb-triangle can be obtained from† [10]:

µb = lim
n→∞[cn(b)]

1/n. (3)

The coefficientscn(b) are obtained in the fractal limit (infinite lattice) from:

cn(b) = lim
s→∞

Gb
n(s)

Nb(s)
(4a)

whereGb
n(s) is the total number of embeddings ofn-step SAWs in stages andNb(s) is the

number of sites in this stage.
The density of a particular SAW is given by:

cSAW(b) = lim
s→∞

Gb
SAW(s)

Nb(s)
(4b)

whereGb
SAW(s) is its number of embeddings in stages.

Clearly,

cn(b) =
∑

SAW/n

cSAW(b) (5)

where
∑

SAW/n is the summation over all distinctn-step SAWs.
In order to calculatecn(b), we generalize the method developed in [11] that relates the

number of embeddings of a connected graph in two consecutive stages of construction of a
regular fractal.

† The asymptotic form expected forcn(b) is µbnnγb−1.
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Figure 2. Examples of embedding which contribute toEbn andI bn terms.� External connection
sites;◦ internal connection sites.

For a particularn-step SAW and for a particularb-triangle there is a minimum lattice
stages0 + 1 for which any embedding of the SAW cannot cross any reproductions of the
s0-stage in the(s0+1)-stage. Fors > s0, the recursion relation betweenGb

n(s) andGb
n(s−1)

is:

Gb
n(s) = A1(b)G

b
n(s − 1)+ 3A2(b)E

b
n + A3(b)I

b
n . (6)

A1(b) is the number of reproductions of stages−1 in s, so the first term in equation (6)
represents the total number of SAWs completely embedded in a single reproduction of stage
s − 1. A2(b) is the number of external sites connecting these reproductions at one side of
the stages, andEbn is the number of embeddings in stages which crosses two reproductions
of stages − 1 through external sites. Analogously,A3(b) and I bn refer to the embeddings
passing through internal sites. Figure 2 shows two particular embeddings which contribute
to Ebn and one toI bn . Note that they do not depend onb nor s if these parameters are
sufficiently large.

The coefficientsA1(b), A2(b) andA3(b) are given by:

A1(b) = b(b + 1)/2 (7a)

A2(b) = (b − 1) (7b)

A3(b) = (b − 1)(b − 2)/2. (7c)

Analogously, we obtain the recursion formula for the number of lattice sitesNb(s):

Nb(s) = A1(b)N
b(s − 1)− 3A2(b)− 2A3(b). (8)

Iterating the recursion formula (6) up tos0+ 1 we obtain:

Gb
n(s) = As−s01 Gb

n(s0)+
1− As−s01

1− A1
[3A2E

b
n + A3I

b
n ]. (9)

Ebn and I bn can be obtained considering the embeddings ofn-step SAWs across two
adjacent reproductions of stages0 [11]. In table 1 we present the values ofs0, G2

n(s0), E
2
n

andI 2
n for the 2-triangle for 16 n 6 5.
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Table 1. Numerical values ofs0, G2
n(s0), E

2
n andI2

n for 16 n 6 5.

s0 G2
n(s0) E2

n I2
n

n = 1 1 9 0 0
n = 2 2 75 4 12
n = 3 2 171 24 72
n = 4 3 1389 100 300
n = 5 3 3264 344 1032

Table 2. Selected values ofcn(b).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 8

b = 2 4 12 30.67 76 186.67 2691.11
b = 3 4.29 14.57 42.43 116.14 307.29 5740.33
b = 4 4.5 16.50 53.10 159.90 458.85 9759.63
b = 5 4.67 18 61.96 201.87 628.89 15 742.83
b = 8 5 21 80.44 297.33 1073.19 44 635.75
b = 15 5.37 24.32 101.47 412.18 1650.96 100 535.28
b = ∞ 6 30 138 618 2730 224 130

Iterating equation (8) withs0 = 1 one obtains:

Nb(s) = As−1
1 Nb(1)+ 1− As−1

1

1− A1
[−3A2− 2A3]. (10)

Nb(1), the number of sites of the generator of theb-triangle, is given by:

Nb(1) = (b + 1)(b + 2)

2
. (11)

Using (10) and (11), we can rewrite (4a) as:

cn(b) = lim
s→∞

Gb
n(s)

Nb(s)
= (A1− 1)Gb

n(s0)+ (3A2E
b
n + A3I

b
n )

A
s0−1
1 [(A1− 1)Nb(1)− (3A2+ 2A3)]

(12)

whereA1, A2 andA3 are given by (7).
In table 2 we presentcn(b) up to n = 8 for some values ofb between 2 and 15.
We have constructed series up to the order ofn = 14 for b ranging from 3 to 20 and

up to n = 13 for b ranging from 21 to 100.

3. Finite SAWs in the Euclidean limit

Consider a particularn-step SAW and letb be sufficiently large: in this cases0 = 1. In
figure 3 we show this SAW embedded in the generator. The total number of embeddings
obeys the relation:

1
2(b − R + 1)(b − R + 2) 6 Gb

SAW(1) 6 1
2(b + 1)(b + 2). (13)

R is the greatest distance between two distinct sites belonging to the SAW, and the left-hand
side of (13) is a lower bound of the number of embeddings of this SAW, that is, it is the
number of embeddings of a (lattice) circle with diameterR, while the right-hand side is the
number of sites of the generator.
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Figure 3. The number of starting sites is less than the total number of sites1
2(b + 1)(b + 2)

and bigger than this total number minus the excluded volume1
2(b − R + 1)(b − R + 2).

We calculate the number of embeddings of this SAW,cSAW(b) using the procedure
shown in the last section. Using inequality (13) we obtain:(
b(b+1)

2 − 1
)
( 1

2(b − R + 1)(b − R + 2))+ 3(b − 1)ESAW+ (b−1)(b−2)
2 ISAW(

b(b+1)
2 − 1

)
(b+1)(b+2)

2 − 3(b − 1)− (b − 1)(b − 2)
6 cSAW(b)

6

(
b(b+1)

2 − 1
) (

1
2(b + 1)(b + 2)

)+ 3(b − 1)ESAW+ (b−1)(b−2)
2 ISAW(

b(b+1)
2 − 1

)
(b+1)(b+2)

2 − 3(b − 1)− (b − 1)(b − 2)
(14)

whereESAW andISAW have analogous definitions asI bn andEbn respectively.
In the limit b→∞ both sides of this inequality go to 1. So,

lim
b→∞

cSAW(b) = 1. (15)

Using (5) it follows that:

lim
b→∞

cn(b) =
∑

SAW/n

lim
b→∞

cSAW(b) = cn(T ). (16)

This result means that thenth terms of the series expansions for SAWs on theb-triangles
converge to thenth term of the series for the triangular lattice whenb→∞.

4. Numerical results in the Euclidean limit

Consideringb as a continuous parameter, the sequence of functions{[cn(b)]1/n} is such that
each term goes to{[cn(T )]1/n} whenb→∞, as shown in section 3. The inversion of the
limits n→∞ andb→∞ is possible if the convergence of that sequence is uniform. Note
in figure 4 the decreasing distance between the curves for subsequentn values, which is a
necessary condition for a uniform convergence. With this assumption, we get:

lim
b→∞

µb = lim
b→∞

lim
n→∞[cn(b)]

1/n = lim
n→∞ lim

b→∞
[cn(b)]

1/n = lim
n→∞[cn(T )]

1/n = µT . (17)
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Figure 4. Plot of [cn(b)]1/n versus 1/b for 16 n 6 12 andb 6 170. The dots are the limiting
triangular values. The plot displays the characteristic behaviour of a uniform convergent series.
The crosses are our estimates ofµb (see text).

Equation (12) guarantees a rational expression forcn(b). Its finite value in the limit
b→∞ implies that both polynomials are of the same degreek. Then,

cn(b) = α0b
k + α1b

k−1+ · · ·
β0bk + β1bk−1+ · · · (18)

whereαi , βi andk depend onn. From (16) and (18) and forb large:

n
√
cn(b) ' n

√
cn(T )

(
1+ δn

b

)1/n

(19)

with

δn = α1

α0
− β1

β0
. (20)

In figure 5 we plotδn versusn calculated from (19). We obtain:

δn ∼ n0.8. (21)

Taking the limitn→∞ in equation (19) and using (3) and (21), we get thatµb → µT ,
with a null first-order correction in 1/b.

Our numerical estimates ofµb confirm this result. We calculate the linear extrapolated
values for different sets of points in the plotcn(b)1/n against (ln n)/n

cn(b)1/n−c1(b)
. The estimates

of µb are obtained averaging these values. The error bar is their standard deviation. This
method parallels the construction of Neville tables [10]. Our results for the known cases
b = 2 and for the triangular lattice areµ2 = 2.2815± 0.0067 andµT ≈ 4.154, using series
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Figure 5. Log–log plot ofδn versusn.

Table 3. Numerical estimates ofµb.

b µb b µb

2 2.282± 0.007 26 3.982± 0.009
3 2.49± 0.02 27 3.991± 0.009
4 2.686± 0.004 28 4.000± 0.008
5 2.82± 0.01 29 4.008± 0.008
6 2.92± 0.02 30 4.015± 0.008
7 2.99± 0.05 31 4.022± 0.008
8 3.13± 0.07 33 4.034± 0.008
9 3.27± 0.07 35 4.044± 0.008

10 3.39± 0.06 37 4.053± 0.007
11 3.52± 0.04 40 4.065± 0.007
12 3.60± 0.03 42 4.071± 0.007
13 3.65± 0.03 45 4.080± 0.007
14 3.71± 0.03 50 4.092± 0.007
15 3.75± 0.02 55 4.102± 0.007
16 3.79± 0.02 60 4.110± 0.007
17 3.82± 0.02 65 4.119± 0.007
18 3.85± 0.02 70 4.125± 0.007
19 3.87± 0.01 75 4.130± 0.007
20 3.89± 0.01 80 4.134± 0.008
21 3.92± 0.01 85 4.138± 0.008
22 3.93± 0.01 90 4.141± 0.008
23 3.95± 0.01 95 4.144± 0.008
24 3.96± 0.01 100 4.146± 0.008
25 3.972± 0.009

up to the order ofn = 19 and 14, respectively. They are in good agreement with the known
resultsµ2 = 2.288 [2] andµT = 4.150 75± 0.0003 [12].
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Figure 6. Plot of µb versus 1/b2. Convergence towards the Euclidean valueµT is observed.

In table 3 we show the estimates ofµb obtained using the procedure above for several
b up to b = 100.

In figure 6 we plotµb versus(1/b2). From the numerical analysis of the data in table 3
we get asymptotically:

µb = (4.148± 0.003)

(
1− (29.0± 0.9)

b2
+ o

(
1

b3

))
. (22)

It confirms the convergence ofµb to µT whenb→∞. The limiting value ofµb when
b→∞ includes the triangular lattice value, and the first correction term is estimated.

The connective constantsµb may also be obtained using an alternative method based
on exact renormalization relations [1, 2]. For the Sierpinski gasket family, the non-trivial
fixed point does not determineµb: one should study numerically the flow in the parameter
space, as shown in [2] for the particular case ofb = 2.

In [4], it is also suggested an asymptotic behaviour for the non-trivial fixed points of
these renormalization equations, asb→∞. Nevertheless, as mentioned above,µb are not
trivially related with the fixed points in the case of the Sierpinski gasket family, and so, it
is not possible to draw any comparison with the asymptotic behaviour found in (22).

5. Conclusion

The main aim of this work is the study of the convergence ofµb towards the Euclidean
valueµT whenb →∞. As explained in the text, this convergence is not obvious due to
an inversion of the limitsb→∞ andn→∞ when one calculates limb→∞ µb or µT .

The direct computation ofµb for large b according to (3) demands the evaluation of
cn(b) for n andb sufficiently large. On the other hand, the exponential growth ofGb

n(s0)

with n sets of upper values ofn for which cn(b) can be evaluated for eachb-triangle by
(12).
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In this treatment, the sequence of coefficientscn(b) are considered for each value of
b independently. We then proceed with a new analysis and considercn(b) as a sequence
of functions (with indexn) of the continuous parameterb. The asymptotic behaviour of
cn(b) when b → ∞ for each value ofn is obtained and it is shown analytically that
limb→∞ cn(b) = cn(T ), that is, each coefficient converges asymptotically to the triangular
value.

Our analysis of the coefficientscn(b) indicate that limb→∞ µb = µT with the first-order
correction term of the order1

b2 .
The numerical estimates ofµb confirm the above result. This is the first numerical

evidence of the convergence of a critical parameter of SAWs to the corresponding Euclidean
value whenb→∞ in the family of generalized Sierpinski gaskets.

Using an exact enumeration technique to calculatecn(b) we obtain series expansions
that are exact order by order. The results presented here forµb have good accuracy and
can be systematically improved by enlarging the order of the series.

The investigation of the statistic of SAWsz on fractals based on the series-expansion
method would also be helpful to settle some open question and conjectures regarding the
limiting behaviour of the associated critical exponents asb→∞. Work along these lines
is in progress.
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